Благодаря чему движется автомобиль

Движение автомобиля

В результате сгорания горючего в цилиндрах двигателя тепловая энергия преобразуется в механическую энергию вращения коленчатого вала.

Усилие, развивающееся на коленчатом валу, передается коробке передач через механизм сцепления. В коробке усилие увеличивается или уменьшается в зависимости от выбранной передачи. От коробки передач усилие передается раздаточной коробке, которая в свою очередь распределяет («раздает») его через соответствующие карданные валы между главными передачами ведущих мостов. Обычно конструкция раздаточной коробки такова, что передаваемое коробкой усилие несколько увеличивается. В главной передаче усилие также увеличивается вследствие соответствующего передаточного отношения между ведущей и ведомой шестернями. Связанный с главной передачей дифференциал распределяет усилие между приводными валами, которые и передают его непосредственно ведущим колесам автомобиля.

Под действием полученного усилия ведущие колеса, стремясь оттолкнуться в точке касания от полотна дороги, начинают катиться по ней, вызывая перемещение автомобиля. Подводимое от двигателя усилие, действующее в точке соприкосновения ведущих колес с дорогой, называется тяговой силой. Величина тяговой силы автомобиля зависит в основном от мощности, развиваемой двигателем, и включенных передач в коробке передач и раздаточной коробке. Тяговая сила зависит также от радиуса колеса, величины потерь на трение в силовой передаче и передаточного отношения главной передачи.

Чтобы автомобиль мог двигаться, необходимо соблюдать два условия:

Сила сцепления ведущих, колес автомобиля имеет решающее значение для его проходимости: чем она больше, тем увереннее движется автомобиль, полностью используя подводимую к ведущим колесам тяговую силу.

Сила сцепления ведущих колес автомобиля зависит от типа и состояния дороги, рисунка протектора и внутреннего давления воздуха в шинах, от величины сцепного веса автомобиля, т.е. от той части полного веса автомобиля, которая приходится на ведущие колеса. Поэтому у автомобилей повышенной проходимости для увеличения их сцепного веса и, следовательно, повышения проходимости все колеса выполняются ведущими; сцепной вес в этом случае равен полному весу автомобиля.

На мокрой или скользкой дороге, когда сцепление шин с дорогой недостаточно, колеса проскальзывают, т.е. буксуют. Для прекращения буксования нужно подкладывать под ведущие колеса доски, хворост, камни. Буксование колес тем меньше, чем меньшая подводится к ним тяговая сила, поэтому необходимо уменьшать подводимую к колесам тяговую силу, используя для трогания и движения автомобиля возможно более высокую передачу при небольшом открытии дроссельной заслонки карбюратора (для дизеля при малой подаче топлива).

Движению автомобиля противодействуют внешние силы:

Они носят название сил сопротивления движению. Рассмотрим подробнее эти силы.

Сила сопротивления дороги слагается из силы сопротивления качению автомобиля по горизонтальной дороге и силы сопротивления движению автомобиля на подъем.

Сила сопротивления качению зависит от типа и состояния дороги, давления воздуха в шинах и общего веса автомобиля. Чем тверже и ровнее покрытие дороги, чем больше давление воздуха в шинах и чем меньше нагрузка автомобиля, тем меньше сила сопротивления качению автомобиля, тем меньшая часть тяговой силы, затрачивается на качение автомобиля.

Сила сопротивления движению автомобиля на подъем зависит от крутизны подъема и нагрузки автомобиля. Чем круче подъем и чем больше нагрузка автомобиля, тем больше сопротивление подъему, тем большую тяговую силу нужно подвести к ведущим колесам, чтобы преодолеть подъем. При движении автомобиля по горизонтальной дороге сила сопротивления подъему отсутствует. Сопротивление воздуха движению автомобиля зависит от формы (обтекаемости) автомобиля и скорости движения. С увеличением скорости автомобиля сопротивление воздуха его движению резко возрастает. Поэтому современные автомобили, особенно легковые, имеют обтекаемую форму.

Сопротивление разгону возникает при ускорении движения автомобиля. Сила сопротивления разгону — это не что иное, как сила инерции автомобиля, т.е. стремление автомобиля сохранить состояние прямолинейного и равномерного движения. Эта сила тем больше, чем быстрее разгоняется автомобиль и чем больше его нагрузка.

При движении автомобиля с постоянной скоростью по горизонтальной дороге тяговая сила ведущих колес затрачивается только на преодоление сопротивления качению и сопротивления воздуха. Излишняя тяговая сила, зависящая от мощности двигателя и передаточных чисел коробки передач и раздаточной коробки, в этом случае может быть использована для разгона автомобиля, на преодоление подъема и на буксировку прицепа.

Если же автомобиль движется по закруглению дороги, на него дополнительно действует центробежная сила, приложенная к центру тяжести автомобиля. Эта сила стремится либо опрокинуть автомобиль, либо сдвинуть (занести) его в сторону, противоположную центру поворота.

Центробежная сила тем больше, чем больше скорость движения автомобиля на повороте и чем круче поворот. Поэтому, чтобы избежать опрокидывания или заноса, перед поворотом следует снижать скорость. Особенно важно это делать на скользкой или влажной дороге.

Источник

Почему двигается автомобиль

Многие из нас являются владельцами собственных транспортных средств. Не удивительно, наличие собственного автомобиля дает больше возможностей при передвижении в любые точки города, страны, мира.

При приобретении машины, человек становится независимым от общественного транспорта. Больше нет необходимости долго выжидать транспорт на остановках и толкаться в переполненных автобусах. Несмотря на то, что наличие автомобиля является довольно распространенным явлением, не каждый из нас задумывается, почему двигается автомобиль и как это объяснить.

Кроме того, после покупки машины, многие даже и не задумываются о ее устройстве и не знают ее основных составляющих. Такая неосведомленность является нежелательным моментом, так как даже минимальные знания частей автомобиля, помогут решить вопросы, связанные с незначительными поломками автомобиля, которые нередко сопровождают владельцев своих транспортных средств.

Изобретать велосипед, при решении данного вопроса, не придется, так как ответ на него уходит в корни обычной школьной физики. Попросту говоря, автомобиль поедет тогда, когда колеса начнут крутиться. Казалось бы, автомобиль никто не толкает и не тянет, но что-то приводит его в движение. Что же является этой самой движущей силой, которая способствует передвижение транспортных средств?

Читайте также:  Видео самый дешевый автомобиль в мире

Почему едет автомобиль

Всем без исключения автолюбителям известно понятие коробка передач. Все водители делятся на две категории, к первой категории относятся водители автомобилей с механической коробкой передач (в данном случае переключение передач осуществляется самим водителем), ко второй категории относятся водители автомобилей с автоматической коробкой передач (человек не занимается переключением передач, эта процедура является автоматической).

Именно пользование коробкой передач позволяет приводить в движение автомобиль и изменять скорость его передвижения. На автомобилях с механической коробкой имеется три педали. Одной из которых является педаль сцепления. С помощью выжатой педали сцепления происходит остановка вращения валов коробки и появляется возможность беспрепятственного включения или переключения скоростей, повторюсь, на автомобилях с механической коробкой.

В движение колеса приводятся с помощью двигателя, при создании силы тяги на колесах. Для осуществления этого процесса современные автомобили используют тепловую энергию, получаемую путем сгорания топлива. Существует много различных видов двигателей, наиболее распространенным является поршневой двигатель.

Двигатель использует смесь паров топлива с воздухом. Образовавшаяся в результате взрыва, энергия характеризуется повышением показателя давления в камере сгорания. При помощи карбюратора происходит подготовка определенной пропорции газа и воздуха в смеси.

Начало движения на автомобиле основывается на выжатой педали сцепления, что позволяет беспрепятственно воткнуть первую передачу на коробке, с дальнейшим плавным ее оставлением. Вследствие этого происходит смещение автомобиля с точки стояния.

Что требуется для плавного старта?

Плавное начало движения является безопасным для движущих механизмов автомобиля, а так же комфортным передвижением самих присутствующих в салоне. Для плавного движения на автомобиле, необходимо правильно работать с педалью сцепления. Сам механизм сцепления располагается между двигателем и коробкой. Существует два положения сцепления. При первом – включенном положении, происходит передача крутящего момента на коробку. При втором – выключенном положении осуществляется отсоединение коробки от двигателя. При выжатой педали сцепления приходит прекращение передачи крутящего момента от двигателя. Выжимая эту педаль, водитель получает возможность включения передачи. При таком положении необходимо плавно снимать ногу с педали, в то время будет происходить приближение диска к поверхности маховика. Взаимодействуя с маховиком, диск приводится в действие и начинает вращаться, что приводит в движение автомобиль. Плавность работы с педалью сцепления оказывает влияние на “гладкость” старта автомобиля. Сразу приноровиться к этому не получится, так как все приходит с опытом, а для хорошего владения автомобилем необходимо его чувствовать.

Таким образом, сложная система взаимодействующих между собой элементов автомобиля приводят его в движение. Сердцем автомобиля, заставляющим его двигаться, конечно же, является двигатель.

Меры предосторожности

Перед осуществлением маневра начала движения, следует удостовериться в исправности всех частей автомобиля. Допускается эксплуатация автомобиля в случае незначительных поломок, не влияющих на безопасность движения и поломок систем, обеспечивающих комфорт передвижение, так как они не связаны с движущими автомобиль элементами.

При неисправностях систем, сказывающихся на плавности движения, следует незамедлительно обратиться в автосервис, а в случае если эта неисправность не дает возможности самостоятельного передвижения на автомобиле, то следует вызвать эвакуационную машину.

Не стоит заниматься починкой автомобиля самостоятельно, если вы не знаете наверняка, как это сделать. Ваша деятельность может привести к окончательной поломке автомобиля и поврежденными могут оказаться еще и другие, ранее не являющиеся таковыми, элементы.

Источник

Силы действующие на автомобиль при движении

Схема сил действующих на ведущее колесо

На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.

Рис. Схема сил действующих на ведущее колесо.
а — состояние неподвижности; б — состояние движения

Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.

На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:

При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопро­тивления разгону (сила инерции).

Тяговая сила

Сила сцепления колес с дорогой

У легковых автомобилей полный вес рас­пределяется по осям примерно поровну. Поэтому сцепной вес его можно принять равным 50% полного веса. У грузовых автомоби­лей при полной их на­грузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.

Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначи­тельном коэффициенте сцепления трогание автомобиля с места со­провождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.

На асфальтобетонных покрытиях в жаркую погоду на поверх­ность выступает битум, делая дорогу маслянистой и более скольз­кой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы ри­сунка протектора шины не успевают продавливать пленку влаги.

Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.

Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает на­столько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.

Читайте также:  Где производится автомобиль урал

Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.

Сила сопротивления воздуха

Передней частью автомобиля воздух сжимается и раздвигает­ся, в то время как в задней части автомобиля создается разреже­ние, которое вызывает образование завихрений.

Сила сопротивления воздуха зависит от величины лобовой, поверхности автомобиля, его формы, а также от скорости движе­ния. Лобовую площадь грузового автомобиля определяют как произведение колеи (расстояние между шинами) на высоту авто­мобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возра­стает в 2 раза, то сопротивление воздуха увеличивается в 4 раза).

Для улучшения обтекаемости и уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а вы­ступающие детали (фары, крылья, ручки дверей) устанавливают заподлицо с внешними очертаниями кузова. У грузовых автомоби­лей можно уменьшить силу сопротивления воздуха, закрыв грузо­вую платформу брезентом, натянутым между крышей кабины и задним бортом.

Сила сопротивления качению

Сила сопротивления качению равна произведению полного веса автомобиля на коэффициент сопротивления качению шин, который зависит от давления воздуха в шинах и качества дорожного покрытия. Вот- некоторые значения коэффициента сопротивления качению шин:

Сила сопротивления подъему

При движении на подъем автомобиль испытывает дополнитель­ное сопротивление, которое зависит от угла наклона дороги к гори­зонту. Сопротивление подъему тем больше, чем больше вес автомобиля и угол наклона дороги. При подъезде к подъему необходимо правильно оценить возможности преодоления подъема. Если подъем непродолжительный, его преодолевают с разгоном автомобиля перед подъемом. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее у начала подъема.

При движении автомобиля на спуске сила сопротивления подъему направлена в сторону движения и является движущей силой.

Источник

Как движется автомобиль

Многие из нас встречали картинку: улица прошлого века, и на мостовой — экипаж без лошадей. Такими примерно были «самобеглые коляски» русских изобретателей Шамшуренкова и Кулибина. Катил «самобеглую» стоявший на педалях человек. Его «механическая энергия » передавалась на ведущие колеса, которые и толкали коляску. Этот же принцип лег в основу другого «самодвижущегося экипажа», появившегося позднее, — автомобиля. Только источником механической энергии у него стал двигатель внутреннего сгорания. Как же его энергия приводит в движение автомобиль?

Где толкающая сила?

Откуда же она возникает, если автомобиль не толкают как тележку и его не тянет лошадь?
Чтобы ответить на этот вопрос, давайте разберем способ, которым можно тележку передвигать, — при помощи рычага. А чтобы нижний конец его не скользил, — забьем в землю клин.
Первый вариант — толкаем рычагом непосредственно тележку. Она сдвинется и в том случае, когда рычаг воздействует прямо на ось колеса, причем плечо, на которое действует рука, получается вдвое большим. Эту работу можно облегчить — придавить рычаг с такой силой, чтобы, опираясь на дорогу, его нижний конец не проскальзывал. Останется лишь непрерывно переставлять его.
А если прилагать силу к верхней части колеса по касательной к окружности? Тогда полоску, выделенную на рисунке посредине пунктиром, можно рассматривать как такой же рычаг, вес машины прижимает ведущее колесо к дороге — оно не пробуксовывает, значит, нижний конец нашего «рычага» как бы удерживается колышком и ось колеса переместится под действием силы F.
Когда ось продвинется несколько вперед — колесо провернется и «конец рычага» — точка 1 уже не будет соприкасаться с дорогой. Ее место займет точка 2, затем точка 3 и так далее.
Таким образом, колесо можно рассматривать как бы состоящим из бесконечного числа рычагов, непрерывно и последовательно сменяющих один другой. Оно удобнее рычага — ничего не нужно переставлять. Способ перекатывания повозки за обод колеса применяют, когда надо помочь лошади. Подобным образом поступают и артиллеристы, выкатывая вручную орудия на огневые позиции: это легче, ибо усилие на оси получается вдвое большим, чем в том случае, если толкать за станину.
Однако лучше не толкать и не тянуть колесо, а вращать. Так нельзя ли найти такой способ, чтобы не толкать и не тянуть колесо, перехватывая его все время за обод? Можно. Для этого достаточно передавать на колесо через ось вращающее усилие, или, как принято говорить в технике, подвести к нему крутящий момент. Крутящий момент стремится провернуть колесо, но этому препятствует сила трения, возникающая между ним и дорогой. Колесо как бы отталкивается от земли и начинает катиться. Здесь главный помощник — трение, без него движение невозможно. Известно, как беспомощен автомобиль, например, на льду.

Разные дороги и разные силы

По асфальту тележка катится легко. Но вот колеса попали на мягкий грунт или песок. Толкать ее,стало труднее. B чем дело? Возросла сила, которую в теории автомобиля называют силой сопротивления качению.
А если встретится подъем? Добавляется сила, стремящаяся скатить тележку.
А встречный ветер? Каждый из нас знает, как трудно двигаться, когда он сильный. Но мчащийся автомобиль сам ‘«устраивает» себе искусственный встречный ветер, и тем сильнее, чем больше скорость.
Кроме того, при разгоне тележку приходится толкать намного сильнее, чем при. равномерном движении: нужно преодолевать силы инерции.
Итак, автомобиль равномерно движется по хорошей горизонтальной дороге: нужна умеренная толкающая сила — лишь для того, чтобы преодолевать трение и сопротивление воздуха.
Но ведь сначала надо тронуться с места. А для этого требуется самая большая толкающая сила. Хотим ускорить движение — надо преодолеть инерцию, опять, же необходимо увеличение толкающей силы. Съехали на плохую дорогу или поднимаемся в гору. И здесь толкающая сила должна намного возрасти. Обычно в зависимости от условий движения она меняется в несколько раз. Соответственно должен меняться и подводимый к колесам крутящий момент. Мы видим: чтобы автомобиль мог двигаться по различным дорогам и с разной скоростью, надо иметь возможность увеличивать и уменьшать крутящий момент на его колесах в широких пределах.

Читайте также:  Банк продает автомобили 2014

Упрямый характер

От двигателя — и колесам

Скорость вращения коленчатого вала двигателя внутреннего сгорания может изменяться примерно от пятисот, когда он работает на «холостом ходу», до нескольких тысяч оборотов в минуту. Казалось бы, можно двигаться с различной скоростью, даже если мотор непосредственно соединить с колесами: быстрее вращается вал двигателя — и, пожалуйста, с большей скоростью идет машина.

У бензинового «характер» хуже

Но вот дорога пошла в гору, и сразу автомобильный двигатель показывает свой «характер». Он значительно снижает обороты (труднее стало тянуть), но крутящий момент увеличивается недостаточно: на десять процентов, на тридцать, самое большое — на пятьдесят. У дизельных двигателей такая «приспособляемость» еще хуже. Давайте взглянем на график. Он показывает, как меняется величина крутящего момента бензинового автомобильного двигателя. Видно и самое худшее: с какого-то числа оборотов (в этом месте поставлена галочка) крутящий момент непрерывно уменьшается.
Действительно, при снижении числа оборотов с 4500 до 3000 крутящий момент возрос с 7 до 9 кгм. Но если подъем, допустим, потребовал большего, двигатель внутреннего сгорания не может справиться с этой задачей: необходимо увеличение момента, а он начинает уменьшаться, скорость движения резко падает — обороты двигателя идут на убыль. крутящий момент становится еще меньше.
В том же диапазоне чисел оборотов современного тягового электродвигателя крутящий момент увеличивается примерно в четыре раза.
В этом отношении для автомобиля больше подошли бы двигатели паровые или электромоторы, как бы отвечающие золотому правилу механики: при большой нагрузке они сбавляют обороты, а тянут сильнее. Но двигатель плюс котельная установка слишком громоздки для автомобиля, а возить на нем электростанцию просто невозможно. Двигатель же внутреннего сгорания обладает пока многими другими преимуществами. А на его «дурной характер» можно найти управу.

Выход есть!

Можно и быстро и медленно

Силы человека, работавшего на педалях «самобеглой» коляски, хватало на движение по ровной дороге. А на подъеме? Для его преодоления между «двигателем» и ведущими колесами был помещен специальный зубчатый барабан. Он позволял увеличить крутящий момент, подводимый к колесам, за счет скорости их вращения, — а следовательно, и скорости движения коляски. Крутящий момент увеличивался, когда ведущая шестерня соединялась с рядом зубьев барабана, расположенных дальше от оси (наибольшее плечо) и, наоборот, — уменьшался при укорочении плеча.
Так же меняется величина крутящего момента и в шестеренчатой передаче, распространенной в современной технике.

Это делает Коробка передач

Менять величину крутящего момента двигателя может механизм, в котором будет несколько пар зацепленных одна с другой шестерен, — допустим, три — с различными передаточными числами: 1:4; 1:2 и 1:1. Первые два позволяют увеличить крутящий момент (толкающую силу) в четыре или в два раза.
Схема такого механизма — коробки передач — показана на рисунке. В общем корпусе находятся три пары шестерен с разными передаточными числами. Шестерни ведомого вала, через который вращение передается к колесам, могут передвигаться вдоль него, все время вращаясь с ним. Действуя рычагом переключения, водитель может соединить любую пару и двигаться на любой из трех передач. Это первая услуга коробки.
Вторая услуга. На рисунке коробка показана в положении «включена первая передача». Если расцепить и эту пару — вращение от двигателя к колесам передаваться не будет. Такое положение называется нейтральным.
При нейтральном положении двигатель не соединен с колесами, и поэтому его легко пустить, прогреть, не надо выключать при остановке перед светофором и т. п.
Третья услуга. Даже мотоцикл случается подать назад. Автомобилю — это просто необходимо. Надо и развернуться и встать под погрузку, подъехать к прицепу.
В общем, ведущие колеса должны вращаться и назад. А двигатель? Его коленчатый вал вращается только в одну сторону. Значит, коробка должна иметь передачу заднего хода. Между ведущим и ведомым валами в зацепление вводится «лишняя» шестерня или две на общей оси, как показано на рисунке. Она и меняет направление вращения ведомого вала.

Чтобы трогаться плавно

Просто соединить шестерни первой передачи не удастся — одна вращается, другая неподвижна. А если включить передачу принудительно — машина «прыгнет» вперед или заглохнет двигатель, да и для зубьев шестерен это небезопасно.
Избавиться от таких неприятностей и плавно тронуться с места позволяет особый механизм — «сцепление», которое располагают между двигателем и коробкой. Оно имеет два положения: сцепление включено — крутящий момент передается на коробку; сцепление выключено — она отсоединена от двигателя.
Для передачи вращения здесь используется сила трения между маховиком и ведомым диском. Расположенные по окружности пружины прижимают диск к маховику, и он вращается вместе с ним — сцепление включено. В таком положении оно находится при движении автомобиля. Пружины обеспечивают такую силу трения, которая необходима для передачи крутящего момента двигателя, без пробуксовки между маховиком и ведомым диском.
Когда водитель нажмет ногой на левую педаль (так принято на автомобилях всего мира), диск, преодолевая усилие пружин, отходит от маховика. Мы говорим: сцепление выключено. Передача крутящего момента от двигателя прекращается, хотя его коленчатый вал и маховик продолжают вращаться.
В таком положении — педаль нажата — водитель включает передачу и, плавно отпуская педаль, постепенно приближает ведомый диск к гладкой поверхности маховика. В это время общая сила давления пружин все увеличивается и сила трения возрастает. Маховик постепенно, плавно увлекает диск, который со все уменьшающимся проскальзыванием начинает вращаться, и. машина плавно трогается. Успех этого процесса зависит от искусства водителя, поначалу частенько он проходит не совсем гладко.
Когда нужно переключить передачу — «перейти», например, при разгоне с первой на вторую или со второй на третью — водитель каждый раз нажимает на педаль сцепления.

Источник

Популярные рекомендации экспертов