Ардуино автомобиль на радиоуправлении

Машинка на радиоуправлении. Arduino + nrf24l01 + пульт.

Исходники для печати можете скачать тут.

Установил электронику: Arduino UNO, драйвер L298n, два мотор-редуктора с колесами и конечно же радио модуль nrf24l01.

Установить переключатель, который будет включать машинку некуда. Поэтому пришлось приколхозить вот такой кусочек фанеры и установить туда переключатель. В дальнейшем его покрашу, или перенесу переключатель.

Установил 2 бокса под аккумуляторы 18650. Соединил их последовательно и подключил к драйверу L298n. Так как у драйвера есть понижающий стабилизатор на 5 вольт. С соответствующих разъемов мы берм 5в и подключаем Arduino UNO. Но тут есть минус. Нужно следить, чтобы аккумуляторы не пере разрядились. Иначе они выйдут из строя. Остальная часть схемы ни чем не отличается от предыдущего проекта.

Пульт управления берем из предыдущего проекта. Схема подключения пульта управления на Arduino + NRF24L01 + гироскоп GY-521 MPU-6050 . Выглядит вот так.

Скетч тоже без изменений.

Пульт планирую переделывать. Тем более он выглядит не очень красиво.

И ребенок у меня его модернизировал. Проводки пере подключал. Я конечно все восстановил. Но работает немного не так как раньше. Смотрите в видео всем отличие.

Искать причину почему радио пульт стал так работать нет времени и желания. Как говорил все ровно его буду переделывать.

Переделал код для машинки. В предыдущей версии жаловались, что при включении крутиться одно колесо. Исправил. Проблема была вот в этом куске кода.

В итоге получилась вот такая машинка на Arduino радио модуле nrf24l01 с пультом управления. Который управляет машиной при наклоне пульта. Не нужно нажимать на кнопки.

Планирую доработку пульта и машинки. Так что Не забывайте подписываться на канал Youtube и вступайте в группы в Вконтакте и Facebook. Всем Пока-Пока. И до встречи в следующем проекте.

Понравилась статья? Поделитесь ею с друзьями:

Источник

Переделка RC-машинки в смарт-машинку при помощи ардуино

Во многих проектах на ардуино предлагается сделать то же самое, что продается в магазинах, но с гораздо большими трудовыми и материальными затратами. Сегодняшний проект не такой, смарт-машинки продаются в магазинах, но стоят в среднем раз в 5 дороже, чем RC-машинки. Поэтому я решил поделиться, как можно переделать практически любую RC-машинку в модную нынче машинку с приставкой «смарт» при помощи ардуино. Вот демо видео того, что получилось в итоге:

Итак, переделывать я решил стандартную RC-машинку, купленную в магазине игрушек примерно за 500 рублей.

Переделку можно осуществить двумя основными способами:
1. Подключить ардуино к пульту ДУ от машинки
2. «Вживить» ардуино внутрь самой машинки

Я решил попробовать оба способа, но сегодня расскажу только про первый, поскольку он несколько проще, а начинать лучше с простого.

Чтобы подключиться к пульту ДУ, его нужно сначала разобрать и удалить те 4 кнопки, которые отвечают за движения вперед-назад и повороты вправо-влево. Можно их отпаять, а можно просто сломать корпус кнопок, оставив только контакты.

Вместо четырех кнопок подключаем четырехканальный блок реле по схеме:

Блок реле подключаем к ардуино, а она уже будет получать сигналы со смартфона посредством блютуз модуля. Скетч для ардуино

unsigned long incomingByte;
int LED2 = 6;
int LED3 = 7;
int LED4 = 8;
int LED5 = 9;

Читайте также:  Блютуз для автомобиля хендай

Теперь нужно сделать простенькое приложение для управления всем этим на подобии этого:

Приложение я сделал в среде визуальной разработки андроид приложений App Inventor 2.

Выглядит оно приложение так:

Логика у приложения очень простая: при касании пальцем кнопки оно отправляет сигнал на ардуино замкнуть соответствующее реле. При отпускании кнопки отсылается команда разомкнуть все реле. Скачать приложение можно тут, исходник тут, но если у кого-то есть полчаса-час лишнего времени, то можно сделать такое приложение «с нуля». На эту тему я снял отдельное видео, где подробно рассказываю что и как делать для тех, кто сталкивается с этой средой разработки в первый раз.

Ну и в конце фото того, как эта схема управления выглядит. Упаковывать все это в коробку не стал, поскольку в планах есть внедрение ардуино непосредственно в корпус этой машинки.


P.S. Сборник из более 100 обучающих материалов по ардуино для начинающих и профи тут
P.P.S. Онлайн курс по ардуино на гиктаймс здесь.

Источник

Делаем машинку на радиоуправлении на Arduino Uno

В этом материале предлагаем узнать, как можно сделать радиоуправляемую машинку в домашних условиях.

Начать процесс изготовления советуем с просмотра авторского видеоматериала

Для изготовления машинки, нам понадобится:
— игрушечная машинка;
— две карты Arduino Uno;
— две платы радио модуля NRF24;
— конденсатор на 470 мф, 25 вольт;
— плата драйвера двигателя L298N;
— двигатель;
— сервопривод;
— аналоговый джойстик;
— аккумуляторные батарейки;
— батарейка крона;
— две кнопки включения и выключения;
— корпус.

Первым делом необходимо припаять конденсатор на выводы питания радио модуля. Также предварительно нужно собрать аккумуляторные батарейки, чтобы получить суммарную мощность в 12 вольт для питания двигателя и платы Arduino.

Необходимо позаботиться о поворотной системе автомобиля. Для этого вырезаем часть, предназначенную для крепления передних колес.

Далее берем два уголка для мебели и проделываем два отверстия в каждом в отмеченных на рисунке местах.

Теперь необходимо проделать отверстия диаметром 4 мм в нижней части корпуса машинки и колесах.

Собираем все. Просовываем винт в колесо, и фиксируем двумя гайками.

Далее надеваем на тот же винт уголок и снова фиксируем гайками.

Просовываем еще один винт в отверстие на корпусе, фиксируем гайками.

В конце остается надеть колесо с уголком на гайку в корпусе машинки и зафиксировать еще парой гаек. Проделываем то же самое со вторым колесом.

Теперь необходимо соединить сервопривод к поворотной системе.

Далее нужно соединить двигатель к шасси. Для этого распиливаем ось шасси по центру. Далее вставляем в отверстия двигателя обе полуоси и приклеиваем эпоксидным клеем.

Также в двигателе есть специальные крепежные отверстия, в которые нужно вставить два винтика, чтобы закрепить двигатель на корпусе машинки.

Теперь необходимо залить код на плату Arduino. В конце статьи будет представлен код для приемника, а также код для передатчика.

Представляем схему сборки джойстика или передатчика.

Ниже вы можете увидеть схему сборки приемника.

В конце остается собрать электронику и механику самодельного радиоуправляемого автомобиля. При включении надо сначала включить пульт управления, после чего саму машинку.

Источник

Машинка на Ардуино: как сделать радиоуправление своими руками

Это первый роботизированный проект, который я когда-либо делал, и если вы никогда не пробовали собрать робота, то, скорее всего, думаете что это сложно. Но Ардуино и шасси 2WD / 4WD сделают вашу сборку намного проще, и вы соберете своего первого робота с радиоуправлением на Ардуино без каких-либо мучений.

По пути ко мне пришла идея о создании радиоуправляемой машины своими руками, которая бы объезжала препятствия, поэтому я собрал и этот проект, видео и файл программы к которому прикладываю ниже.

Шаг 1: Нужные части и инструмент

Я воспользовался готовыми решениями, и все запчасти и инструменты были приобретены через интернет.

Для робота, объезжающего препятствия:

Ультразвуковой модуль измерения расстояния HC — SR04 (GearBest)

Шаг 2: Что такое робот?

Робот – это электромеханическое устройство, которое способно каким-либо образом реагировать на окружающую обстановку и принимать самостоятельные решения или действия, чтобы достичь определенных целей.

Читайте также:  Выкуп кредитного автомобиля фото

Робот состоит из следующих компонентов:

В следующих шагах я опишу каждый из этих компонентов, и вы всё легко поймёте.

Шаг 3: Структура / Шасси

Структура состоит из физических компонентов. Робот имеет один или несколько физических компонентов, которые каким-либо образом двигаются для выполнения задания. В нашем случае структура робота – это шасси и колёса.

Шаг 4: Приводы

Под приводом можно понимать устройство, которое преобразовывает энергию (в робототехнике под энергией понимается электрическая энергия) в физическое движение. Большинство приводов производят вращательное или линейное движение.

В нашем случае привод – это DC-мотор, скорость которого равна 3000 оборотам в минуту, а вращающий момент 0.002 Н•м. Теперь добавим к нему шестерню с передаточным числом 1:48. Новая скорость уменьшается на коэффициент 48 (в результате давая 3000/44 = 68 оборотов в минуту) и вращающий момент увеличивается на коэффициент 48 (в результате давая 0.002 x 48 = 0.096 Н•м).

Шаг 5: Подготавливаем клеммы моторчиков

Отрежьте по 4 провода красного и черного цвета длиной примерно 12-15 см. Я использовал провода сечением 0.5 мм2. Оголите концы проводов. Припаяйте провода к клеммам моторчиков.

Вы можете проверить полярность моторчиков, соединив их с отсеком для батареек. Если он движется в прямом направлении (с красным проводом на позитивной и черным на негативной клеммах батареек), то с соединением все в порядке.

Шаг 6: Устанавливаем мотор

Прикрепите две акриловые распорки к каждому мотору при помощи двух длинных болтов и двух гаек. Для наглядности вы можете посмотреть видео.

Возьмите на заметку, что провода на каждом моторе ведут к центру шасси. Соедините оба красных и оба черных провода от моторов с каждой стороны шасси. После соединения у вас будет две клеммы на левой стороне и две на правой.

Шаг 7: Устанавливаем крышу

Послу установки 4 моторов нужно установить крышу. Приладьте 6 медных стоек при помощи гаек, клеммы проводов выведите сквозь отверстие в крыше.

Шаг 8: Контроллер

Теперь у нас установлены шасси и приводы, но нам не хватает контроллера. Шасси без контроллера никуда не поедут. Робот будет оставаться на месте, оставаясь безжизненным. Поэтому, для того чтобы робот перемещался, нам нужен мозг (контроллер).

Контроллер – программируемое устройство, способное работать по заданной программе и отвечающее за все вычисления, принятие решений и коммуникацию. В нашем случае в качестве контроллера мы используем микроконтроллер Ардуино Нано.

Контроллер принимает входные данные (с датчиков, удалённо и т.д.), обрабатывает их и затем даёт команду приводам (моторам) выполнить выбранное задание.

Если вы подключите позитивный провод от батарей на одну строну моторчика, затем подключите негативный провод от батарей на другой контакт моторчика, то он начнёт крутиться вперёд. Если вы поменяете провода местами, то мотор начнёт вращаться в другую сторону.

Микроконтроллер можно использовать, чтобы вращать мотор в одном направлении, но если вам хочется с помощью микроконтроллера вращать мотор и вперёд, и назад, то вам нужна дополнительная схема – H-мост. В следующем шаге я объясню, что это такое.

Шаг 9: Н-мост (модуль LM 298)

Что такое Н-мост?

Термин Н-мост произошел от типичного графического представления этой схемы. Это схема, которая может вращать мотор как в прямом, так и в обратном направлении.

Принцип работы:
Посмотрите приложенную картинку для понимания принципа работы схемы Н-моста. Мост состоит из 4 электронных выключателей S1, S2, S3, S4 (транзисторы / MOSFET/ IGBTS).

Когда выключатели S1 и S4 закрыты, а остальные два открыты, положительное напряжение будет проходить через мотор, и он будет вращаться в прямом направлении. Таким же образом, когда закрыты выключатели S2 и S3, а S1 и S4 открыты, обратное напряжение будет даваться на мотор и он начнёт вращаться в обратном направлении.

Заметка: выключатели на одной руке (то есть S1, S2 или S3, S4) никогда не закрываются одновременно – это создаст короткое замыкание.

Читайте также:  Аргонная сварка для радиатора автомобиля

Н-мосты доступны в виде интегральных схем, либо можно собрать свой мост при помощи 4 транзисторов или MOSFET. В моём случае используется интегральная схема Н-моста LM298, которая позволяет управлять скоростью и направлением моторов.

Out 1: DC мотор 1 «+» или шаговый двигатель A+
Out 2: DC мотор 1 «-» или шаговый двигатель A-
Out 3: DC мотор 2 «+» или шаговый двигатель B+
Out 4: вывод мотора B
12v: вход 12V, но можно использовать от 7 до 35V
GND: Земля
5v: выход 5V, если джампер 12V стоит на месте, идеально для питания Arduino (и т.п.)
EnA: позволяет получать сигналы PWM для мотора A (Пожалуйста, прочитайте секцию «Arduino Sketch Considerations»)
IN1: включает мотор A
IN2: включает мотор A
IN3: включает мотор B
IN4: включает мотор B
BEnB: позволяет получать сигналы PWM для мотора B (Пожалуйста, прочитайте секцию «Arduino Sketch Considerations»)

Шаг 10: Входы / Датчики

В отличие от людей, роботы не ограничены лишь зрением, звуком, осязанием, обонянием и вкусом. Роботы используют различные датчики для взаимодействия с внешним миром.

Датчик – это устройство, которое выявляет и отвечает на определенные типы входящей информации из окружающего мира. Этой информацией может быть свет, тепло, движение, влажность, давление или любое другое явление окружающей среды.

Входящие сигналы могут идти от датчиков, удалённо, или со смартфона. В этом руководстве я использую смартфон в качестве девайса, отправляющего сигналы, управляющие роботом.

Шаг 11: Источник питания

Чтобы управлять приводами (моторами) и питать контроллер, роботу нужен источник питания. Большинство роботов питается от батарей. Когда мы говорим о батареях, то имеем в виду множество вариантов:

В зависимости от ваших нужд, нужно выбрать подходящий вид батарей. По-моему мнению, нужно всегда выбирать заряжаемые батареи достаточной ёмкости. Я использовал 2 литий-ионные батареи стандарта 18650 ёмкостью 2600mAh. Если для автономности вам нужно больше мощности, используйте большой комплект батарей, например 5A turnigy.

Отсек для батарей:
Отсек для батарей я заказал в Китае, он не подходил для батарей с плоским верхом, поэтому я использовал два неодимовых магнита для придания батарейкам нужной формы.

Зарядка:
Для зарядки батарей нужен хороший зарядник. По моему опыту, эти зарядники хорошо зарекомендовали себя:

Шаг 12: Установка компонентов

Цельная схема устанавливается на крыше. Отсек для батарей, драйвер двигателей LM 298 и маленькую макетную плату я закрепил горячим клеем, но можно просто прикрутить их. Модуль bluetooth закрепляется скотчем. Ардуино нано вставьте в макетную плату.

Шаг 13: Электропроводка

Для соединения модулей понадобятся провода с джамперами.
Соедините красные провода двух моторов вместе (на каждой стороне) и затем черные провода. В итоге у вас выйдет по две клеммы с каждой стороны.

MOTORA отвечает за два правых мотора, соответственно два левых мотора соединены с MOTORB.
Для соединения всех компонентов следуйте инструкции:

Шаг 14: Логика управления

Чтобы понять принцип работы, я создал эту логическую таблицу. Она очень пригождается во время написания кода.

Шаг 15: Софт

Часть с фотом очень проста, она не требует никаких библиотек. Если вы поняли таблицу логики из прошлого шага, то сможете написать свой код. Я не тратил на код много времени и просто скопировал чей-то готовый вариант. Чтобы управлять роботом-машиной, я использую смартфон, соединённый с контроллером через модуль Bluetooth (HC-06).

Скачайте приложение. После его установки, свяжите телефон с модулем Bluetooth. Пароль «1234». Код Ардуино прикреплён ниже.

Шаг 16: Тестирование

Чтобы проверить робота-машину, я положил её на маленькую картонную коробку. Таким образом, колёса будут крутиться, но машинка будет оставаться на месте. Проверьте работоспособность, нажимая все доступные кнопки. Если всё работает, то можно по-настоящему управлять ей.

Заметка: если моторы вращаются в противоположном направлении, то просто поменяйте местами провода.

Шаг 17: Планы на будущее

В этом руководстве я объяснил, как создать простенькую машинку. Дальше я хочу добавить в неё некоторые улучшения. Вы можете присоединить к ней различные датчики, вот некоторые идеи:

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Источник

Популярные рекомендации экспертов
Adblock
detector