Аэродинамические коэффициенты для автомобилей

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м 2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Читайте также:  Где можно обтянуть салон автомобиля

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

Источник

Топ-7 худших и лучших машин в мире аэродинамики (41 фото)

Главным показателем аэродинамических свойств автомобиля считается коэффициент лобового сопротивления — Cx. Цифры, которые демонстрируют свежие новинки, еще 10 лет назад казались недостижимыми для обычных, массовых машин.

Мы выбрали лучшие и худшие модели с точки зрения аэродинамики. В нашу подборку вошли только серийные легковые автомобили современности. То есть те, которые выпускаются сейчас либо выпускались в последние 15 лет и до сих пор встречаются на дорогах.

Для тех, кто хочет разобраться в вопросах аэродинамики подробнее, ниже мы приводим небольшой «ликбез», объясняющий, как рассчитывают аэродинамические коэффициенты и какие еще показатели, кроме Сх, имеют значение.

Аэродинамика для чайников:

Что такое коэффициент аэродинамического сопротивления Сх? Если выражаться предельно упрощенно, этот показатель демонстрирует, насколько автомобиль легче «прорезает» воздух по сравнению с условным цилиндром, площадь поперечного сечения которого равна максимальной площади сечения автомобиля. Еще это называют площадью фронтальной проекции машины, или коротко — мидель. У условного цилиндра Cx равен единице (в реальности точная цифра будет зависеть от длины цилиндра, но для простоты объяснения мы сейчас от этого абстрагируемся).

Читайте также:  Водитель на личном автомобиле мультивен

Cx показывает лобовое сопротивление — то есть по продольной оси «Х». Соответственно, есть еще Cy и Cz, но в случае с автомобилем они играют гораздо меньшую роль.

Как от формы тела меняется Сх? Все дело в создаваемых завихрениях. Если вместо цилиндра взять плоский щит такого же диаметра, то его сопротивление воздуху будет на 17-20% больше, чем у цилиндра (Cx щита = 1,17-1,2) за счет завихрений позади щита. Там создается зона разреженного воздуха, и она сама по себе как бы «тянет» щит назад. То же самое происходит и с автомобилем.

Одна из лучших форм с точки зрения аэродинамики — капля. У нее Сх будет равен лишь 0,04. То есть капля на 96% более обтекаема, чем цилиндр при равенстве диаметров. Это получается потому, что сзади у капли — длинный сужающийся хвост, а спереди — округлый «обтекатель». Они обеспечивают минимум завихрений. Создатели первых аэродинамичных автомобилей середины прошлого века экспериментировали именно с каплевидными формами кузова (вспомните, какой «хвост» у «Победы»).

У современных легковых автомобилей Сх чаще всего составляет около 0,3. Это означает, что автомобиль на 70% эффективнее с точки зрения аэродинамики, чем цилиндр.

Реальная сила, с которой воздух сопротивляется движению автомобиля, зависит, разумеется, от скорости. Причем с ростом скорости аэродинамическое сопротивление возрастает квадратично. Это влияет в первую очередь на расход топлива — и чем выше скорость, тем больше влияет. Само собой, и максимальная скорость тоже ограничена не только мощностью мотора, но и аэродинамическими особенностями автомобиля.

Создатели автомобилей, кроме обтекаемости машины в продольном направлении, также заботятся об обтекаемости сбоку и о подъемной силе, действующей на автомобиль.

Подъемная сила — это вторая по значимости проблема в аэродинамике автомобилей помимо лобового сопротивления воздуха. Дело в том, что абсолютно любой автомобиль по своим формам похож на профиль крыла самолета: снизу плоский, а сверху — выпуклый. Это означает, что воздух, протекающий над автомобилем, совершает более длинный путь, чем воздух снизу. И скорость потока снизу выше, чем сверху. Из-за этого над машиной появляется зона разреженного воздуха, а под ней, напротив, зона повышенного давления. Чем выше скорость, тем сильнее воздух снизу приподнимает автомобиль.

Разного рода аэродинамические элементы вроде антикрыльев, спойлеров, сплиттеров, диффузоров и накладок на днище призваны создать прижимную силу. В случае с гоночными болидами удается этого достичь в полной мере: чем выше скорость, тем сильнее прижимается машина к земле. Это увеличивает сцепление колес с дорогой и делает автомобиль более стабильным на высоких скоростях.

Тут еще надо упомянуть о таком явлении, как граунд-эффект — за счет особой формы днища и применения аэродинамических «юбок» вдоль бортов конструкторы гоночных машин научились в свое время создавать под машиной зону разреженного воздуха, за счет чего автомобиль «липнет» к дороге. Этим прежде пользовались конструкторы Формулы 1, однако в 80-е годы граунд-эффект в Королевских гонках был запрещен. С тех пор у всех болидов одинаковое ровное днище.

В случае с гражданскими автомобилями о создании прижимной силы говорить не совсем корректно. За счет аэродинамических ухищрений удается добиться снижения подъемной силы, но все равно машины на высоких скоростях немного «взлетают», колеса разгружаются и стабильность падает.

Подъемная сила и сила лобового сопротивления это еще не все. Важное значение имеют момент крена и поворачивающий момент (измеряются при повороте автомобиля под углом к воздушному потоку). Эти показатели отражают склонность машины реагировать на боковые порывы ветра. Чем меньше эти цифры, тем лучше машина держит скоростную прямую и меньше отклоняется от траектории, например, при проезде встречной фуры.

Еще один важный показатель — опрокидывающий момент. Положительные значения этих сил говорят о том, что с ростом скорости передние колеса разгружаются, а задние — нагружаются; отрицательные — наоборот. В идеале — должен быть близок к нулю.

се эти показатели измеряются «вживую» путем продувки автомобилей и макетов в аэродинамической трубе на разных скоростях воздушного потока и измерения реальных сил, действующих на кузов.

Аэродинамическая труба, позволяющая продувать полномасштабные макеты машин и реальные автомобили — это очень большое и сложное сооружение. Скажем, труба на «АвтоВАЗе» имеет длину 67,5 м, а ширину — 29 м. Воздух в ней проходит путь в 150 метров. Поток создается вентилятором, диаметр которого 7,4 м. Максимальная скорость воздушного потока в трубе — 216 км/ч.

Рейтинг худших автомобилей по части аэродинамики

Автомобилей с ужасной аэродинамикой в мире немало, но по понятным причинам многие производители не раскрывают официальные цифры аэродинамических показателей. Более того — у множества моделей они вообще никогда не измерялись ни производителем, ни независимыми исследователями. Мы выбрали семерку наиболее показательных машин, по которым данные известны и достоверны.

Читайте также:  Влияние чип тюнинга на автомобиль

7. Lada 4×4 / ВАЗ-21213 «Нива». Коэффициент Сх = 0,536

В том, что классическая «Нива» не умеет ездить быстро, вина не только слабого 81-сильного мотора, но и, конечно, аэродинамики. «Максималка» у этого автомобиля — всего лишь 137 км/ч. Впрочем, для машины родом из 70-х годов прошлого века это не так плохо. Владельцы «Лады 4х4» могут утешать себя тем, что Гелендваген, являющийся практически ровесником тольяттинского внедорожника, по обтекаемости еще хуже.

6. Mercedes-Benz G-класса. Коэффициент Сх = 0,54

Те, кто говорит, что у Гелендвагена аэродинамика кирпича, все-таки сильно сгущают краски. У тела кубической формы Сх равен 1,05, а у Мерседеса G-класса этот показатель вдвое меньше. Гелендваген очень сильно страдает от своей аэродинамики: какой бы мощный мотор ни ставили на эту модель, ее «максималка» оставляет желать лучшего. Даже безумная версия G 65 AMG, развивающая 630 л.с., способна набирать всего лишь 230 км/ч.

5. Вазовская «классика». Коэффициент Сх = 0,56-0,5

В зависимости от модели аэродинамика тольяттинских автомобилей классического семейства немного различается. Наши коллеги из «Авторевю» в 2000 году продули «семерку» и получили результат 0,546. Хуже всего дела у «копейки» — аж 0,56. Такие данные приводит учебник «Автомобили и тракторы. Основы эргономики и дизайна», изданный МАМИ в 2002 году. «Шестерка», по тем же данным, имеет коэффициент 0,54. А лучше всех себя показал универсал 2104 — 0,53.

4. Hummer H2. Коэффициент Сх = 0,57

Многие и не догадываются, что Hummer на трассе с трудом может угнаться за современной малолитражкой, включая Lada Granta. Американский внедорожник не способен ехать быстрее 160 км/ч, в то время как тольяттинской модели покоряется скорость в 183 км/ч. Понятно, что Hummer более чем вдвое тяжелее, но так и мотор у него какой! Выпускавшийся с 2002 по 2009 годы внедорожник имеет под капотом могучий V8 рабочим объемом 6,2 л (393 л.с.), но при Cx = 0,57 он просто не способен нормально «продираться» сквозь толщу воздуха.

3. Jeep Wrangler (поколение TJ). Коэффициент Сх = 0,58

Автомобиль, который произошел от армейского «Виллиса» образца 1941 (!) года, принципиально чужд высоким скоростям. Конечно, современная машина не имеет общих кузовных панелей с Джипом времен Второй мировой войны: Wrangler гораздо крупнее и имеет более обтекаемые формы. Но это не сильно помогает. Хуже всего дела обстоят у двухдверной модификации с открытым верхом (Сх = 0,58). А лучше всего, как можно догадаться, у длиннобазной пятидверки с жесткой крышей — Jeep Wrangler Unlimited. Эта версия имеет Cx, равный 0,495.

2. УАЗ «Хантер» / УАЗ-469. Коэффициент Сх = 0,6

Выпускающийся сейчас «Хантер» мало отличается от УАЗа-469 образца 1972 года, и потому не мог не попасть в наш антирейтинг. Данные по УАЗу-469 приводит вышеупомянутый учебник МАМИ. Доверять этим сведениям вполне можно: первый в списке авторов — профессор Игорь Степанов, много лет занимающийся именно аэродинамикой, а также Анатолий Карунин — в прошлом заведующий кафедрой «Автомобили», а ныне ректор МГТУ «МАМИ».

1. Caterham Seven. Коэффициент Сх = 0,7

Как ни странно, у этого спорткара дела с аэродинамикой обстоят гораздо хуже, чем у угловатых внедорожников. Дело в том, что перед нами фактически разработка 50-х годов — Lotus Seven. Но самое интересное, что ужасная аэродинамика ничуть не мешает этой модели отлично проявлять себя на треке: дело в том, что сухой вес Caterham — лишь 575 кг. Поэтому при мощности в 260 л.с. (с «топовым» мотором) эта модель может набирать 250 км/ч. Ну а разгон до 100 км/ч и вовсе суперкаровский — 3,1 секунды.

Рейтинг лучших автомобилей по части аэродинамики

Борьба за улучшение аэродинамики машин сейчас обострилась как никогда: многие автопроизводители идут буквально «колесо в колесо». Поэтому на некоторых строчках нашего рейтинга расположились не одна и не две, а сразу несколько моделей (и в некоторых случаях это еще не полный список!). По каждой из моделей приведены данные той модификации, которая является лучшей по значению Сх.

Места с седьмого по пятое делят сразу два десятка машин, так что отдельно комментировать каждую из них мы не будем. Ну а начиная с четвертого места — то есть с Cx = 0,23 — остановимся на каждой модели.

Источник

Популярные рекомендации экспертов
Adblock
detector